M ay 2 00 4 Index theory with bounded geometry , the uniformly finite  class , and infinite connected sums

نویسنده

  • Kevin Whyte
چکیده

We work primarily in the category of manifolds of bounded geometry. The objects are manifolds with bounds on the curvature tensor, its derivatives, and on the injectivity radius. The morphisms are diffeomorphisms of bounded distortion. We think of these manifolds as having a chosen bounded distortion class of metrics. Unless otherwise stated, all manifolds in the paper are assumed of this type. These definitions are designed to reflect the restrictions imposed on a non-compact manifold which is controlled in some way by a compact manifold. The most common example of this is a covering of a compact manifold. Any metric on the base gives a metric of bounded geometry on the cover, and any two such metrics are bounded distortion equivalent. Similarly, leaves of foliations of compact manifolds have a canonical bounded distortion class of metric of bounded geometry. We try to understand index theory for these manifolds, and in particular, questions of positive scalar curvature. Generally, the appropriate notion here is uniformly positive scalar curvature, meaning the scalar curvature is bounded away from zero from below. When we say that M admits a metric of positive scalar curvature, we mean that within the chosen bounded distortion class of metrics there is a metric of uniformly positive scalar curvature. To understand positive scalar curvature we need an appropriate generalization of the  class. One interesting feature which emerges is that this class lives in a non-Hausdorff homology group, and thus standard C algebra methods do not apply. It turns out that to understand this class requires rather delicate spectral estimates for Dirac operators on the boundaries of certain compact submanifolds. The resulting theorems have unexpected applications to compact manifolds. The motivation for this work comes from some interesting infinite connected sum examples studied in [BW1] and [Ro]. As these examples provide

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 02 04 00 7 v 3 [ m at h . C O ] 1 4 M ay 2 00 2 Fat 4 - polytopes and fatter 3 - spheres

We introduce the fatness parameter of a 4-dimensional polytope P, defined as φ(P) = ( f1 + f2)/( f0 + f3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness φ(P) > 5.048, as well as the first infinite family of 2-simple, 2-s...

متن کامل

ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS

Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...

متن کامل

ar X iv : m at h / 03 10 31 8 v 3 [ m at h . SG ] 9 M ay 2 00 7 The Banach Poisson geometry of multi - diagonal Toda lattices

The Banach Poisson geometry of multi-diagonal Hamiltonian systems having infinitely many integrals in involution is studied. It is shown that these systems can be considered as generalizing the semi-infinite Toda lattice which is an example of a bidiagonal system, a case to which special attention is given. The generic coadjoint orbits of the Banach Lie group of bidiagonal bounded operators are...

متن کامل

Enlargeability and Index Theory: Infinite Covers

In [5] we showed non-vanishing of the universal index elements in the K-theory of the maximal C∗-algebras of the fundamental groups of enlargeable spin manifolds. The underlying notion of enlargeability was the one from [3], involving contracting maps defined on finite covers of the given manifolds. In the paper at hand, we weaken this assumption to the one in [4] where infinite covers are allo...

متن کامل

Uniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces

We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004